Ancient Astronomy

Topics: How-did Greeks know the SHAPE and SIZE of the Earth, the DISTANCE to the Moon and the DISTANCE to the Sun.
Why did the Greeks put the Sun at the centre of the Solar System 1700 years before Copernicus did?

Learning Goals

- Reproduce experiments of Aristotle and Eratosthenes. Use geometry to explain how these experiments reveal the shape and size of the Earth, Moon and Sun and the distance to the Moon and Sun.

ANCIENT ASTRONOMY

In the British Isles,

 stones were used to keep track of the Sun and Moon. Stonehenge

ANCIENT ASTRONOMY

The Chinese developed a working

 calendar and kept careful track of comets，eclipses transient events and sun spots．
 स゙か。
eb

Early Chinese Star Chart

ANCIENT ASTRONOMY

- The Mayan culture was able to accurately predict solar and lunar eclipses.

The Mayans also developed
a very accurate calendar,
later adopted by the Aztecs.
Dresden Codex $11^{\text {th }}$ C copy
 oldest known North American book.
 have been used as a Venus Observatory

ANCIENT ASTRONOMY

- The Mayan civilization 250 900 AD - southern Mexico, Guatemala, El Salvador
- Many parts to calendar long count 52 years (life of a person) - longer running 5126 years began in 3114 BC $(-3114+5126=2012!!)$
- But Mayan culture not apocalyptic - just start of a
 new cycle

* EARLY GREEK ASTRONOMY
 *

- Shape of Earth (Aristotle circa 340 BC)

PHASES of the MOON

PHASES of the MOON

Eafrth goes through phases as seen from Moon

LUNAR ECLIPSE

$$
\left.\theta^{(}(0)\right)^{3}
$$

LUNAR ECLIPSE GEOMETRY

LUNAR ECLIPSE

LUNAR ECLIPSE

Gives realtive size of Earth and Moon Earth $\sim 3 x$ size Moon

Known to the Greeks Aristotle 340 BC

LUNAR ECLIPSE GEOMETRY

ECLIPSE GEOMETRY

'Size Earth: Erastothenes' Method

Size Earth

- Shape of Earth (circa 340 BC)

Size of Earth (Erastothenes circa 200 BC)
7/360 = AS/Circumference
Stadium Roman Unit 158 m
Circumference $=40,600 \mathrm{~km}$
Knowing π (Circumf / Diam.)
Radius = 6470 (6370) km

Discussion Question

Why is it important that the experiment

be done simultaneously at two sites that are more or less north-south?

EARLY GREEK ASTRONOMY

- Shape of Earth (érca 340 BC)
- Size of Earth (Erastothenes circa 200 BC,

Relative Ske of Earth and the Moon from eqipse (Aristarcl us circa 280 BC) - M/E measured of 38
Correct inswer M/E $=0.27$

Aristarchus' Calculations on

Relative-Sizes Sun, Earth, Moon (10 ${ }^{\text {th }}$ C Greek copy)

EARLY GREEK ASTRONOMY

- Shape of Earth (circa 340 BC)
- Size of Earth (Erastothenes circa 200 BC)
- Relative Size of Earth and the Moon (Aristarchus circa 280 BC)
Size of the Moon, Distance to the Moon
Radius $=1730 \mathrm{~km}$ (modern number 0.27 Earth)
Distance $=380,000 \mathrm{~km}-$ from size and angular size
(angular size = true size / distance)

* EARLY GREEK ASTRONOMY

- Shape of Earth (circa 340 BC)
- Size of Earth (Erastothenes circa 200 BC)
- Relative Size of Earth and the Moon (Aristarchus circa 280 BC)
- Size of the Moon, Distance to the Moon

Distance to the Sun

HELIOCENTRIC SOLAR SYSTEM

Greek Argument that the Sun is at the Centre of the Solar System

- Sun is much farther from Earth than the Moon
- Since the Sun and Moon have the same angular size, diameter Sun much larger than Moon
- Earth is only 3 times larger than the Moon, thus the Sun is much larger than Earth
- Thus, the Sun is much more massive than Earth (assumes both made of same material)
\therefore Greeks concluded Sun is at centre of the system (circa 200 BC) - 1700 years before Copernicus.

